

Formation and Oxidative Aging of Secondary Organic Aerosols Using the Potential Aerosol Mass Oxidation Flow Reactor

Andy Lambe Principal Scientist Aerodyne Research, Inc. Iambe@aerodyne.com

Tesscorn Webinar - 31 May 2021

Outline

- 1. Background
- 2. Intro to Oxidation Flow Reactors (OFRs)
- 3. Laboratory and Field Applications of OFRs

Aerodyne Research

Providing research and development services and advanced instrument and software products to industrial, academic and government customers addressing national and international environmental, energy and defense challenges.

- Dr. Charles E. Kolb, Former President

Dave Nelson

Aerodyne Research.

Charles Kolb (dec. 2020)

- Founded in 1970
- Located in Billerica, MA, USA
- About 70 scientists and support staff
- Research Centers:
 - Aerosol and Cloud Chemistry
 - Atmospheric and Environmental Chemistry
 - Aero-Thermodynamics
 - Optical Signature Recognition
 - Sensor Systems and Technology

(17+) Aerodyne Instruments in India

AMS measurements of aerosols in India

• Nonrefractory submicron aerosols dominated by organics

Primary/secondary OA split

Ahmedabad, Gujarat, India

Singh et al., Atmos. Environ., **2019**

• What are the precursors to OOA (SOA)?

Environmental chambers: traditional laboratory SOA generation

Hours/days of real time ≈(?) 1-2 days' equivalent aging time

- Large batch reactors (1-100 m³)
- Resource-intensive, slow, contamination/wall losses

OFRs: laboratory and in situ SOA generation

<0.1 L 🧲

<mark>-</mark>>>100 L

Radical production in OFRs

- Oxidative aging timescales of days to weeks
- Low- to high-NO_x with N₂O addition (Lambe et al., AMT, 2017)
- Other oxidants: O₃, NO₃, CI, Br

Stepping through OFR conditions

OFR photochemical box model

Li et al., *J. Phys. Chem. A*, **2015**

Aerodyne Research, Inc

• Reactions describing formation and destruction of radicals (incl. OH)

Simplified OFR model representation

Rowe et al., ACP, 2020

Aerodyne Research, Ir

- Photochemical age (days) ≈ OH exposure *10⁻¹¹
- See also: Li et al., J. Phys. Chem. A, 2015; Peng et al., ACP, 2016

Atmos. Chem. Phys., 7, 5727–5744, 2007 www.atmos-chem-phys.net/7/5727/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Introducing the concept of Potential Aerosol Mass (PAM)

E. Kang¹, M. J. Root¹, D. W. Toohey², and W. H. Brune¹

¹Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA ²Atmospheric and Oceanic Sciences, University of Colorado, CO 80309-0311, USA

 Early definition of "PAM" = maximum aerosol mass that oxidation of precursor gas(es) produces

Potential Aerosol Mass of ... VOCs?

Lambe et al., *ACP*, **2015**

Aerodyne Research, In

• SOA composition is dynamic as a function of photochemical age

Elemental composition of SOA generated in chambers versus OFRs

Lambe et al., *ACP*, **2015**

PAM OFR community (65+ groups)

Penn State

Bill Brune Andy Lambe et al. Aerodyne

PAM-001

Rajan Chakrabarty Mayank Kumar, WashU-St Louis IIT Delhi **PAM-042**

What can be Learned from SOA Chemistry Studies in India?

adapted from Joost de Gouw, CU Boulder

- 1. What fraction of SOA formation is explained by oxidation of measured VOCs?
- 2. What are the gas- and particle-phase products from the OFR and are they also observed in aged air masses?

Aging motor vehicle emissions in a traffic tunnel

Fort Pitt Tunnel Pittsburgh, PA, USA

Tkacik et al., ES&T, 2014

Aging on-road motor vehicle emissions

4th Ring Road, Beijing, China Liao et al., *ES&T*, 2021

Aging urban background air

CalNex, Pasadena, CA, USA Ortega et al., ACP, **2016**

Other studies: Palm et al., ACP, 2016, 2017, 2018; Hu et al., ACP, 2016; Hu et al., ES&T, under review; Kang et al., ACP, 2018; Nault et al., ACP, 2018; Ahlberg et al., Atmosphere, 2020

What Can Be Learned about SOA Physicochemical Properties using OFRs?

- 1. What are SOA yields and composition over multiple generations of aging?
- 2. What precursor(s) are necessary to explain ambient SOA formation?
- 3. How do SOA properties such as light absorption and water uptake change with aging?

Aging laboratory diesel emissions

Other studies: Karjalainen et al., ACP, 2016; Link et al., Atmos. Environ, 2017; Zhao et al., ES&T, 2018; Pieber et al., ACP, 2018

Aging biomass burning emissions

"Tar balls"

Sumlin et al., ES&T Letters, 2017 [Chakrabarty Group]

Other studies: Cubison et al., ACP, 2011; Ortega et al., ACP, 2013; Martinsson et al., ES&T, 2015; Fortenberry et al., ACP, 2018; Pieber et al., ES&T, 2019; Sangupta et al., ACP, 2019

Laboratory SOA Yield Studies

Janecheck et al., ACP, 2019

Other Studies: Lambe et al., ES&T, 2012; Li et al., ES&T, 2013; Chen et al., ACP, 2013; Bruns et al., AMT, 2015 Jathar et al., ES&T, 2017; Ahlberg et al., Atmos. Environ., 2017; Friedman et al., ES&T, 2017; Eluri et al, ACP, 2018; Ahlberg et al., ACP, 2019; Khalej et al., 2021

SOA hygroscopicity studies

Other studies

Massoli et al., *GRL*, **2010**; Saukko et al., *ACP*, **2012**; Wang et al., *JGR-A*,**2012**; Lambe et al., *ES&T*, **2013**; Lienhard et al., *ACP*, **2015**; Liu et al., *ACP*, **2015**; Schill et al., *GRL*, **2016**; Watne et al., *ES&T*, **2017**; Charnawskas et al., *Faraday Discuss.*, **2017**; He et al., *ES&T*, **2018**; Zhang et al., *ES&T Letters*, **2018**; Buchholz et al., *ACP*, **2019**

Aerodyne Research, In

SOA toxicity studies

Chowdhury et al., ES&T Letters, 2018

Other studies: Chowdhury et al., ES&T, 2019; King et al., Chemosphere, 2021; Li et al., J. Haz. Mat., 2021; Khan et al., Chem. Res. Toxicol., 2021

Summary

- OFRs can be used for understanding OVOC/SOA formation and aging
- OFR perturbations of ambient air aid interpretation of OVOC/SOA precursors and source factors (PMF)
- OFRs complement and extend the capabilities of environmental chambers, usually at much lower cost

Resources

- Wiki: <u>https://sites.google.com/site/pamwiki/</u>
- Manual (moving to ARI knowledge base): <u>https://pamusersmanual.jimdo.com/</u>
- <u>aerodyne-pam-users@aerodyne.com</u>

Thank you!

"On demand" $N_2O_5 \& NO_3$ generation via OFR_{dark} -i N_2O_5

Lambe et al., AMT, 2020

$$\begin{split} \log[(\text{NO}_3)_{\text{exp}}] &= a + b\log[273.15 + T_{\text{OFR}}] + c\log[\tau_{\text{OFR}}] \\ &+ d\log[\text{NO}_2]_{0, \text{ LFR}} + e\log[\text{O}_3]_{0, \text{ LFR}} + T_{\text{OFR}} \\ &+ f\log[k_{\text{w}_{\text{OFR}}, \text{ N}_2\text{O}_5}] + \log\left(\frac{[\text{NO}_2]_{0, \text{ LFR}}}{[\text{O}_3]_{0, \text{ LFR}}}\right) \\ &\cdot (g\left(\log[\text{O}_3]_{0, \text{ LFR}}\right)^2 + h\log[\text{O}_3]_{0, \text{ LFR}}) - \frac{[\text{NO}_2]_{0, \text{ LFR}}}{[\text{O}_3]_{0, \text{ LFR}}} \\ &\cdot (i + j\log[\text{O}_3]_{0, \text{ LFR}}) + k\log(\text{NO}_3\text{R})_{\text{ext}} \\ &+ l\log[\text{NO}_2]_{0, \text{ LFR}} \cdot T + m\log[\text{O}_3]_{0, \text{ LFR}} \cdot \log k_{\text{w}_{\text{OFR}}, \text{ N}_2\text{O}_5} \end{split}$$

Particulate organic nitrate generation via OFR-iN₂O₅

 β -pinene + NO₃ SOA Lambe et al., AMT, **2020**

Diel oxidative aging of aerosols

Li et al., ES&T, 2020a

<u>Other studies:</u> Cheng et al., Aerosol Sci. Technol, **2020**; Li et al., ES&T, **2020b**; He et al., ES&T, **2021**; Li et al., Science of the Total Environment, **2021**; Sumlin et al., ACP, **under review**